[Contribution from the Istituto di Chimica Industriale Politechnico of Milano]

The Distribution of Products in a Series of Consecutive Competitive Reactions

By G. Natta and E. Mantica
Received October 8, 1951

For series of successive competitive irreversible reactions of the type (1) general expressions have been derived giving the number of moles $N A B N_{i}$ of the various products as functions of the number of moles of the substance A reacted and of the constants $k_{2}, k_{3}, \ldots, k_{1}, \ldots, K_{n}$ (called distribution constants) expressed by the ratio of the velocity constants from reactions from 2 to n to that of the first reaction. If the intermediate products $A B_{r}$ are recycled in the amounts $\nu A B_{r}$ the general expressions above obtained are properly modified. The equations derived have been verified with available experimental data for some series of reactions such as the formation of alkanolamines and halogenation of methane (up to a maximum of $n=4$). The results obtained are sufficiently satisfactory for the process without recirculation, while further verifications are being made for the process with recycling. Expressions above permit to determine the distribution of products as a function of the number of moles of the initial compound A reacted, without considering the reaction rate. By knowing a reaction rate constant (e.g., that of the first reaction $A+B=A B$) it would be possible to calculate the number of moles which are formed at a given time for all the series of the reactions considered (ref. 7).

The kinetic study of a series of consecutive, competitive and irreversible reactions of the type

$$
\begin{align*}
& A \quad+B=A B \\
& A B \quad+B=A B_{2} \\
& \cdots \cdots \cdots \cdots \cdots \cdots \tag{1}\\
& A B_{i}-1+B=A B_{i} \\
& \cdots \cdots \cdots \cdots \cdots \\
& A B_{n}-1+B=A B_{n}
\end{align*}
$$

is of both theoretical and practical interest as a number of industrial chemical processes can be represented by a series of equations of this type. Examples are the halogenations of saturated and unsaturated hydrocarbons, the reactions of alkylene oxides with water, alcohols, ammonia and amines, the alkylations of aromatic hydrocarbons and the esterifications of glycols with polyacids. Also some processes of formation of organic macromolecules follow series of reactions which can be referred to type (1) ; in particular if $A=B$, we have the reactions of polymerization, for example, those of the vinyl monomers.

The polymerization reactions however are not suitable for the study of the distribution of products as the high chain growth velocity rapidly leads to such complex molecules as to prevent the identification and measurement of the single polymers. On the other hand, the other reactions mentioned above allow more information to be obtained as the difficulties encountered in the isolation of the products, although still considerable, may often be overcome. There are, however, few experimental and theoretical papers on the variation of the composition of a mixture of products as function of the ratio between the initial amounts of the reactants. Still fewer are the papers on the possibility of recycling one or more intermediate products in order to modify, in the desired direction, the final distribution of the products, eliminating those of lesser interest and obtaining a higher yield of those desired.

Previous Works.-Ostwald ${ }^{1}$ was the first to make a kinetic study of series of consecutive reactions and the first to attempt to overcome the difficulties involved in integrating the differential rate equations by expressing the concentrations of the various molecular species not as a function of time, but as a function of the reaction products. Later Rakowski ${ }^{2}$ solved, in a satisfactory manner, the problem
(1) W. Ostwald, "Lehrbuch der altgetnelde Chemie;" W, Engelmann, Leipzig, 1902, 2 Auf., Bd.2, 2 Teit, page 277.
(2) A, Rakowski, 2. physik. Chem., 87, 321 (1907),
for series of monomolecular consecutive reactions or reactions which may be referred to this type. For a long time, the existence of even one bimolecular stage in the series frustrated the attempts to solve the differential rate equations and, even as recently as 1941 , Hirniak ${ }^{3}$ was able to declare the non-existence of satisfactory integration formulas of general validity. However, with the assumption of restrictive hypotheses it has been possible to solve the differential equations relating to series of two bimolecular reactions. For example, assuming the second reaction to be very rapid with respect to the first and by means of graphical integration, Natta and Pastonesi ${ }^{4}$ in 1937 studied the synthesis of methanol from carbon monoxide and hydrogen as a series of two consecutive, irreversible, bimolecular reactions.

Notation

In 1943 Fuoss 5 was the first to treat four consecutive, concurrent, irreversible reactions and in 1945 Natta on his own ${ }^{8}$ and with Simonetta ${ }^{7}$ developed very general expressions valid for any number n of reactions. Other works published in recent years on this subject are those of Potter and MacDonald, ${ }^{8}$ Potter and McLaughlin, ${ }^{9}$ Pshezhetskii and Rubinstein, ${ }^{10}$ Ferrero, Berbé and Flamme, ${ }^{11}$ Berbé ${ }^{12}$ and McMullin. ${ }^{13}$ Finally we mention the work of Eldrige and Piret ${ }^{14}$ on a system of continuous flow stirred-tank reactors, giving formulas for consecutive reactions, and a recent paper by Natta and Mantica ${ }^{15}$ whose results will now be summarized.
(3) J. Hirniak, Acta Physicochim. (U.R.S.S.), 14, 613 (1941); C. A., 37, 2643^{4} (1943).
(4) G. Natta and G. Pastonesi, Chimica e Indusiria (Milan), 19, 313 (1937).
(5) R. M. Fuoss, This Journal, 65, 2406 (1943).
(6) G. Natta. Rend. ist. Lombardo Sci., 78, No. 1, 307 (1945).
(7) G. Natta and M. Simonetta, ibid.. 78, No. 1, 336 (1945).
(8) C. Potter and W. C. MacDonald, Can. J. Research, 25E, 415 (1947): C. A., 42, 21b (1948).
(9) C. Potter and R. R. McLaughlin, ibid., 25E 405 (1947); C. A.. 42, 441i (1948).
(10) S. Ya. Pshezhetskii and R. N. Rubinstein, J. Phys. Chem. U.S.S.R., 21, 659 (1947); C. A., 42, 2162f (1948).
(11) P. Ferrero, F. Berbé and L-R. Flamme, Bull. soc. chim. Belges, 56, 349 (1947).
(12) F. Berbé, Chimie et industrie, 68, No, 3 bis, 492 (1950).
(13) R. B. MacMullin, Chem. Eng. Progress, 44, 183 (1948).
(14) J. W. Eldridge and E. L. Piret, ibid., 46, 290 (1950).
(15) G. Natta and E, Mantica, Gass. chim, ital, R1, 104 (1951).
A, B, reactants
$A B, A B_{2}, \ldots A B_{i}, \ldots, A B_{n}$, reaction products
$A B_{r}$, recycled intermediate reaction product
$N_{A_{0}}$, number of moles of reactant A initially present
N_{A}, number of moles of reactant A present
N_{B}, number of moles of reactant B present
N_{ABi}, number of moles of product AB_{i} present
ν_{ABr}, number of moles of product AB_{r} recycled to feed
x_{i}, number of moles of product AB_{i} formed
K_{i}, velocity constant of i th reaction
$k_{\mathrm{i}}=K_{\mathrm{i}} / K_{1}$, distribution constant of i th reaction
$\left(\alpha_{i}\right)_{n}$, ith coefficient in the expression of x_{n} in processes without recirculation of intermediate products
$\left(\beta_{\mathrm{i}}\right)_{\mathrm{n}}, i$ th coefficient in the expression of x_{n} in processes with recycling of intermediate products

Derivation of Equations

The distribution of the products in a series of consecutive concurrent irreversible reactions carried out in a batch process: Except when all the reactions are irreversible and of the second order, the expression for the reaction rate is

$$
\begin{equation*}
\mathrm{d} x_{n} / \mathrm{d} t=K_{n}\left(x_{n-1}-x_{n}\right) N_{\mathrm{B}} \tag{2}
\end{equation*}
$$

From the ratio of two equations of type (2) there results

$$
\begin{equation*}
\frac{\mathrm{d} x_{n}}{\mathrm{~d} x_{m}}=\frac{K_{n}}{K_{m}} \times \frac{x_{n-1}-x_{n}}{x_{m-1}-x_{m}} \tag{3}
\end{equation*}
$$

The case having the greatest practical interest is that in which $m=1$ and the following expression is obtained

$$
\begin{equation*}
\frac{\mathrm{d} x_{n}}{\mathrm{~d} x_{1}}=k_{n} \frac{x_{n-1}-x_{n}}{N_{\mathrm{A}_{0}}-x_{1}} \tag{4}
\end{equation*}
$$

where $N_{\mathrm{A}_{0}}$ has been substituted for x_{0} and $k_{n}=$ K_{n} / K_{1}.

Equation 4 is a linear expression which is easily integrated giving the following value for x_{n}

$$
\begin{aligned}
x_{n} & =N_{\mathrm{A}_{0}}\left[1+\left(\alpha_{1}\right)_{n}\left(\frac{N_{\mathrm{A} 0}-x_{1}}{N_{\mathrm{A}_{0}}}\right)+\right. \\
& \left.\left(\alpha_{2}\right)_{n}\left(\frac{N_{\mathrm{A} 0}-x_{1}}{N_{\mathrm{A} 0}}\right)^{k_{2}}+\cdots \cdots+\left(\alpha_{n}\right)_{n}\left(\frac{N_{\mathrm{A}_{0}}-x_{1} k_{2}}{N_{\mathrm{A}_{0}}}\right)^{k_{n}}\right]
\end{aligned}
$$

where

$$
\begin{equation*}
\left(\alpha_{\mathrm{i}}\right)_{n}=\frac{k_{2} k_{3} \cdots \cdots k_{n}}{k_{\mathrm{i}}\left(k_{\mathrm{i}}-1\right)\left(k_{\mathrm{i}}-k_{2}\right) \cdots\left(k_{\mathrm{i}}-k_{n}\right)}(-1)^{n} \tag{6}
\end{equation*}
$$

and the term $k_{\mathrm{i}}-k_{\mathrm{i}}$ at the denominator is to be cancelled.

If the quantities $N_{\mathrm{A}_{0}}, x_{1}, x_{2}, \cdots, x_{n-1}, x_{n}$ are known, the distribution of products may be calculated with the equations

$$
\begin{align*}
& N_{\mathrm{A}}=N_{\mathrm{A}}-x_{1} \\
& N_{\mathrm{AB}}=x_{1}-x_{2} \tag{7}\\
& \ldots \ldots \ldots \ldots \ldots \ldots \\
& N_{\mathrm{ABi}}=x_{\mathrm{i}}-x_{\mathrm{i}}+1 \\
& \ldots \ldots \ldots \ldots \ldots \\
& N_{\mathrm{ABn}}=x_{\mathrm{n}}
\end{align*}
$$

The distribution of products in a series of consecutive concurrent irreversible reactions carried out in continuous processes: In continuous processes (continuous stirred tank reactor) with ideal mixing the equations developed above can be simplified further. In fact in this case the equation (3) given above leads to the following value for x_{n} if we consider the case in which $m=1$ and bear in mind that all the integration constants are zero $x_{n}=\frac{k_{2} k_{1} \cdots k_{n} x_{1}^{n_{1}}}{\left[\left(N_{A_{9}}-x_{1}\right)+k_{8} x_{1}\right]\left[\left(N_{A_{9}}-x_{1}\right)+k_{3} x_{1}\right] \cdots\left[\left(N_{A_{9}}-x_{1}\right)+k_{n} x_{1}\right]}$

$$
\begin{aligned}
& x_{n}=\frac{k_{2} k_{3} \cdots \cdots k_{n} x_{n}^{n}}{\left[\left(N_{\mathrm{A}_{0}}-x_{1}\right)+k_{2} x_{1}\right]\left[\left(N_{\mathrm{A}_{0}}-x_{1}\right)+k_{3} x_{1}\right] \cdots\left[\left(N_{\mathrm{A}_{0}}-x_{1}\right)+k_{n} x_{1}\right]}+ \\
& +\sum_{1}^{n-1} \frac{k_{\mathrm{r}}}{\left.\left[\left(N_{\mathrm{A}_{0}}-x_{1}\right)+k_{\mathrm{r}+1} x_{1}\right]\left[\left(k_{\mathrm{A}+2} \cdots k_{n} x_{1}^{n-r} \nu_{\mathrm{A}} \mathrm{x}_{\mathrm{r}}\right)+k_{\mathrm{r}+2} x_{1}\right] \cdots\left(N_{\mathrm{A}_{0}}-x_{1}\right)+k_{\mathrm{n}}\right]}
\end{aligned}
$$

$$
\begin{align*}
& N_{\mathrm{A}}=N_{\mathrm{A}}-x_{1} \tag{5}\\
& N_{\mathrm{AB}}=x_{1}+\nu_{\mathrm{AB}}-x_{2} \tag{13}\\
& \hdashline \ldots \ldots \ldots \ldots \ldots \\
& N_{\mathrm{ABi}}=x_{1}+\nu_{\mathrm{ABi}}-x_{i}+1 \\
& \ldots \ldots \ldots \ldots \ldots \ldots \\
& N_{\mathrm{AB}}=x_{n}
\end{align*}
$$

The distribution of products in a series of consecutive irreversible reactions carried out in continuous processes with recirculation of intermediate products: For continuous processes results a modification of the conditions of integration of the equations (9) and (10). In particular from equation (10) the following expression is derived for x_{n}, bearing in mind that the integration constants are all zero

The distribution of the products is still given by equations (13).

Verification of the Foregoing Equations

The distribution of products in a series of consecu-

Chlorination of Methane.-The thermal chlorination of methane with gaseous chlorine can be represented by the series of reactions

$$
\begin{aligned}
& \mathrm{CH}_{4}+\mathrm{Cl}_{2}=\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{HCl}+23850 \mathrm{cal} . \\
& \mathrm{CH}_{3} \mathrm{Cl}^{2}+\mathrm{Cl}_{2}=\mathrm{CH}_{2} \mathrm{Cl}_{2}+\mathrm{HCl}+23575 \mathrm{cal} . \\
& \mathrm{CH}_{2} \mathrm{Cl}_{2}+\mathrm{Cl}_{2}=\mathrm{CHCl}_{3}+\mathrm{HCl}+23860 \mathrm{cal} . \\
& \mathrm{CHCl}_{3}+\mathrm{Cl}_{2}=\mathrm{CCl}_{4}+\mathrm{HCl}+24280 \mathrm{cal} .
\end{aligned}
$$

In addition to these we may consider the explosive reaction between methane and chlorine

$$
\mathrm{CH}_{4}+2 \mathrm{Cl}_{2}=\mathrm{C}+4 \mathrm{HCl}+69648 \mathrm{cal} .
$$

and the reactions of pyrolysis of the intermediate products. However, in normal working conditions with a low $\mathrm{Cl}_{2} / \mathrm{CH}_{4}$ ratio, the importance of secondary processes can be limited. To verify the applicability of equations (5) and (7) developed above, we have used the data given by Hirschkind ${ }^{16}$ which are in good agreement with preceding data by McBee, Hass, Neher and Strickland ${ }^{17}$ and by Wilson and Howland. ${ }^{18}$

In Table I we have collected the values of the distribution constants k_{2}, k_{3} and k_{4} obtained by introducing into equations (5) the experimental values x_{1}, x_{2}, x_{3} and x_{4} and solving the expressions thus obtained for k_{n}. Using the values $k_{2}=2.3$, $k_{3}=1.4$ and $k_{4}=0.45$, the numbers of moles of the various products have been calculated with the results shown in Fig. 1 and in Tables A, B and C. ${ }^{19}$ The calculated values are compared with the experimental values as shown in the same tables.

Fig. 1.-Distribution of products in thermal chlorination of methane: ——, calcd. curves; X○\& \bigcirc, exptl. values.
(β) The Synthesis of Ethanolamines.--Ethylene oxicle reacts with a water solution of ammonia
(16) W. Hirschkind, Ind. Eng. Chem., 41, 2749 (1949).
(17) E. T. McBee, H. B. Hass, C. M. Neher and H. Strickland, ibid., 34, 296 (1942).
(18) M. J. G. Wilson and A. F. Howland, Fuel, 28, 127 (1949).
(19) For tables indicated by letter, order Document 3675 from American Documentation Institute, 1719 N. Street, N.W., Washington 6, D. C., remitting $\$ 1.00$ for microfilm (images 1 inch high on standard 35 mm . motion picture fim) or $\$ 1.50$ for photocopiea (6×8 benes) readable whout optical aid.

Table I
Distribution Constants k_{2}, k_{3} and k_{4} for Thermal Chlorination of Methane as Functions of Ratio Cl_{2} Reacted/ CH_{4}

Cl_{2} reacted $/$	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6
CH_{4}	0.2							
k_{2}	2.95	2.75	2.28	2.30	2.30	2.23	2.23	2.33
k_{3}	2.0	2.05	2.05	1.90	1.60	1.45	1.35	1.40
k_{4}	.	.-	..	0.42	0.42	0.45	0.44	0.46

giving simultaneously the three ethanolamines according to the series of reactions

A fourth reaction

is also possible but its rate is much slower than that of the foregoing so that this fourth step, and any eventual successive steps, can be neglected without appreciable error.

The data used for our verification are those of Ferrero, Berbé and Flamme, ${ }^{11}$ which are in good agreement with those of Potter and McLaughlin. ${ }^{9}$ In Table II are given the values of the distribution constants k_{2} and k_{3} obtained by introducing the above mentioned experimental values into equation (5). With $k_{2}=4.5$ and $k_{3}=3.1$ and the values given in Tables D and E and in Fig. 2 we have

Moles of ethylene oxide reacted per mole NH_{3}.
Fig. 2.-Distribution of products in ethanolamines synthesis. Batch process at $15^{\circ} ; —$, calcd. curves; $\mathrm{X} \odot \Delta$, exptl. values.
calculated the distribution of the products and compared the results with the experimental values.

Table II
Distribution Constants k_{2} and k_{a} as Functions of Ratio Ethylene Oxide/ NH_{3} in Ethanolamines Synthesis Batch process at 15°

$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O} / \mathrm{NH}_{1}$	0.1	0.2	0.333	0.5	1
k_{2}	5.05	5.45	4.8	4.4	4.55
k_{3}	4.60	4.40	4.10	4.10	3.05

(γ) The Synthesis of Isopropanolamines.-Propylene oxide also reacts with water solutions of ammonia giving simultaneously the three isopropanolamines according to the series of reactions

Table III
Distribution Constants k_{2} and k_{3} as Functions of Ratio Propylene Oxide/ NH_{8} in Isopropanolamines Synthesis

Propylene oxide/ NH_{0}	0.066	0.1	0.2	0.333	0.5	1
k_{2}	5.85	5.85	5.45	5	4.4	2.85
k_{3}	4.15	3	2.5	2.15	1.70	1.60

The distribution of products in a series of consecutive concurrent irreversible reactions carried out in continuous processes: The applicability of equations (8) has been verified with the experimental data contained in the above mentioned paper by Ferrero, Berbé and Flamme. ${ }^{11}$ In Table IV are given the values calculated for the distribution constants k_{2} and k_{3} and these are compared with the values calculated above for the batch process (given in brackets). Assuming $k_{2}=4.7$ and $k_{3}=4.8$ the distribution of the various products have been calculated with equations (8) and (7). The results are given in Tables H and I and in Fig. 4 and are compared with the experimental data.

The distribution of products in a The successive addition of propylene oxide to triisopropanolamines giving ethers of this product is of minor interest owing to its very different reaction rate.

The data used for our verification were taken from the kinetic study by Berbe ${ }^{12}$ on the synthesis of the isopropanolamines.

In Table III are given the values of the distribution constants calculated according to the usual method, while in Tables F and G and in Fig. 3 they are compared with the experimental values. The calculated values were obtained with $k_{2}=$ 4.4 and $k_{3}=1.7$.

Moles of propylene oxide reacted per mole NH_{3}.
Fig. 3.-Distribution of products in isopropanolamines synthesis. Batch process at 15° : ——, calcd. curves; $\mathrm{X} \odot \Delta$, exptl. values.
series of consecutive concurrent irreversible reactions carried out in batch processes with recirculation of intermediate products. (α) The Synthesis of Ethanolamines with Recirculation of Monoethanolamine.-

Table IV

Distribution Constants k_{2} and k_{3} as Functions of Ratio Ethylene Oxide/ NH_{3} in Ethanolamines Synthesis
Continuous process at 15°. The values in brackets are the constants k_{2}, k_{3} for the batch process.
Ethy-
lene
oxide/
NHH
$\begin{array}{ccccccccc}\text { oxide/ } & & & & & & & \\ \text { NH: } & 0.05 & 0.066 & 0.1 & 0.2 & 0.333 & 1 & 1.5 & 2 \\ k_{2} & 4.56 & 5.23 & 6.09 & 5.45 & 5.07 & 5.12 & 3.81 & 2.08 \\ & & & (5.05) & (5.45) & (4.8) & (4.55) & & \\ k_{2} & 3.80 & 5.95 & 4.98 & 4.15 & 4.87 & 6.23 & 5.08 & 3.15 \\ & & & (4.60) & (4.40) & (4.10) & (3.05) & & \end{array}$

Moles of ethylene oxide reacted per mole NH_{3}.
Fig. 4.-Distribution of products in ethanolamines synthesis. Continuous process at 15° : - - , caled. curves; $\mathbf{X} \propto \otimes$, exptl. values.

The experimental data for the verification have been taken once more from the paper by Ferrero, Berbé and Flamme. ${ }^{11}$ The two cases of recycling monoethanolamine and diethanolamine have been considered separately.

Table V gives the values of the distribution constants k_{2} and k_{3} calculated in the usual manner while the values of the same constants obtained in processes without recirculation are indicated in brackets.

Table V

Distribution Constants k_{2} and k_{3} as Functions of Ratio Ethylene Oxide/ NH_{3} in Ethanolamines Synthesis
Batch process at 15° with recycling of 0.164 mole of monoethanolamine per mole NH_{3} fed to process. The values in brackets apply to the batch process without recycle Ethylene
oxide/NH

k_{3}	5.45	5.52	4.80
	(5.05)	(5.45)	(4.80)
k_{3}	4.80	4.22	4.38
	(4.60)	(4.40)	(4.10)

(β) The Synthesis of Ethanolamines with Recirculation of Diethanolamine.-Table VI applies to the calculation of distribution constants k_{2} and k_{3} supposing the recycled product to be diethanolamine. Here again these values are compared with those of the constants k_{2} and k_{3} for batch processes without recycling, which are given in brackets.

Table VI

Distribution Constants k_{2} and k_{3} as Functions of Ratio Ethylene Oxide/ NH_{3} in Ethanolamines Synthesis
Batch process at 15° with recycling of the indicated amounts of diethanolamine per mole NH_{3} fed to process. The values in brackets apply to the batch process without recycle

Ethylene	0.1	0.2	0.333
Diethanolamine recycled,			
moles per mole NH_{3}	0.045	0.070	0.0833
k_{2}	n.d.	3.7	5.65
		(5.45)	(4.80)
k_{3}	n.d.	4.5	5.25
		(4.40)	(4.10)

The distribution of products in a series of consecutive concurrent irreversible reactions carried out in continuous processes with recirculation of intermediate products: Equations (13) and (14) have also been verified with the experimental data of Ferrero, Berbé and Flamme, ${ }^{11}$ and the results given in Table VII apply to the recycling of monoethanolamine while those given in Table VIII apply to the recycling of diethanolamine. In both cases the values obtained for k_{2} and k_{3} in continuous processes without recycling are given in brackets.

Comment.- It can be seen from the above verifications of the calculated distributions of products in a series of consecutive concurrent reactions that, in some instances, there is fair agreement with ex-

Table VII
Distribution Constants k_{2} and k_{3} as Functions of Ratio Ethylene Oxide/ NH_{3} in Ethanolamines Synthesis
Continuous processes at 15° with recycling of 0.131 nole of monoethanolamine per mole NH_{3} fed to process

Ethylene oxide $/ \mathrm{NH}_{3}$	0.1	0.2	0.333
k_{7}	5.97	5.67	6.88
	(6.09)	(5.45)	(5.07)
k_{3}	4.45	4.17	5.90
	(4.98)	(4.15)	(4.87)

Table VIII

Distribution Constants k_{2} and k_{3} as Functions of Ratio Ethylene Oxide/ NH_{3} in Ethanolamines Synthesis
Continuous process at 15° with recycling of the indicated amounts of diethanolamine per mole NH_{3} fed to process

Ethylene oxide $/ \mathrm{NH}_{3}$	0.066	0.1	0.2	0.333
Recycling diethanolamine				
moles per mole NH_{3}	0.0287	0.033	0.046	0.060
k_{2}	n.d.	4.05	5.17	5.16
		(6.09)	(5.45)	(5.07)
k_{3}	9.08	11.72	8.62	8.05
		(4.98)	(4.15)	(4.87)

perimental data (thermal chlorination of methane, synthesis of ethanolamines by batch process), while in other instances there may be considerable discrepancy. These deviations seem to be greater in the case of reactions in the liquid phase and may partly be due to the fact that the molar concentrations have been considered instead of the activities of the species present. In the case in question the two quantities certainly differ appreciably. Another cause of deviation is the eventual inaccuracy of the experimental data which affects, to a greater or lesser extent, all the calculated values.

The fact remains, however, that deviations to a smaller extent and in a preferential direction are noticed also in the thermal chlorination of methane in the gas phase.
In general, there will be noticed a decrement, within certain limits, with the increase of the reacted amounts of the values of the single distribution constants in a manner that must be attributed to some common cause. We believe that a possible explanation may be found admitting that molecules may exist in an activated state at the instant in which they are formed. As these possess a greater reactivity they should increase the reaction rate of every molecular species. In consequence higher values should be reached when the ratio between the activated molecules which are being formed and the pre-existing molecules is maximum. Only a greater abundance of experimental data can rosolve the present uncertainties and for this purpose researches have been undertaken on some series of reactions of Type (I).
Milano, Italy

